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Abstract
Aim: Despite increasing survival rates, breast cancer is still the cause of most cancer-related deaths after lung cancer. Risperidone is a nonconventional 
antipsychotic drug approved by the US Food and Drug Administration in 1994 for clinical use. It is a strong dopamine receptor D2 (DRD2) antagonist. It is 
also a benzisoxazole derivative with high affinity for serotonin 5-hydroxytryptophan (5-HT2a and 5-HT2c) adrenergic receptors. The stimulation of DRD2 and 
5-HT2a receptors has been found to be cancerogenic in several studies. The present study aims to investigate the antitumor activity of risperidone against 
MCF-7 breast cancer cells, which potentially takes effect via DRD2 and 5-HT2 antagonism.
Material and Methods: A commercially available CCK-8 cell counting assay kit was used to determine the effects of risperidone on MCF-7 proliferation. To 
evaluate its effect on cell migration, a two-dimensional cell scratch assay was utilized. Finally, single-cell gel electrophoresis (comet assay) was performed to 
determine DNA damage.
Results: Risperidone significantly suppressed proliferation and migration while triggering DNA damage in MCF-7 cells.
Discussion: The potential of risperidone as an antitumor agent in breast cancer was revealed and encouraging data were obtained for future studies aiming to 
elucidate its predicted mechanism. This study also provides encouraging preliminary data for the development of new drugs to effectively treat various cancer 
types via DRD2 and 5-HT2a blockage with minimal side effects.
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Introduction
Currently, 1 out of every 8 women will fight breast cancer at 
some point in their lives. Although survival has been improved 
with newly developed treatment strategies and increased 
awareness of early diagnosis, treatment success has still not 
reached the desired level. It is clear that we need new treatment 
strategies. 
Studies have shown that those exposed to chronic stress are 
predisposed to develop cancer. A relationship between various 
neurotransmitters and cancer progression has also been 
identified [1]. Many studies report that dopamine and serotonin 
stimulate angiogenesis in cancer [2-9]. 
Exogenous serotonin has been shown to induce tumor cell 
proliferation in vitro [10]. It also stimulates tumor angiogenesis 
via the activation of serotonin receptor 1b and serotonin 
receptor 2b [2-4]. Serotonin 5-hydroxytryptophan (5-HT2b) 
was detected at higher rates in the endothelial cells in cases of 
breast cancer, colon cancer, and pancreatic cancer [11]. It has 
been determined that ritanserin, a 5-HT2a receptor antagonist, 
induces apoptosis in colon cancer [12]. The serotonin 5-HT2a 
receptor has been shown to stimulate TGF-β1 expression 
through ERK proliferative and fibrotic signals in mesangial cells 
and has also been shown to increase cell proliferation [13]. 
Anticancer activity through an antagonistic effect on the 
dopamine DRD2 receptor has also been revealed by some 
studies [14, 15]. Increased expression of DRD2 in cancer 
cells was shown by Diakatou et al. [16]. It was reported that 
the DRD2 antagonist exerts its antitumor activity by partial 
activation of the cAMP/PKA pathway [17]. Studies in which 
thioridazine, a well-known antipsychotic agent, was used as a 
DRD2 antagonist revealed its proapoptotic, antiangiogenic, and 
antiproliferative activities against various tumor types [18-20].
Risperidone is a selective monoaminergic antagonist with 
unique properties. It is a benzisoxazole derivative and a second-
generation antipsychotic drug with strong affinity to 5-HT2a, 
5-HT2c, D2, and H1 α1 adrenergic receptors [21].
Developing new drugs in cancer research is both costly and time-
consuming. However, the design of treatment modalities on the 
basis of drugs that are already in clinical use can potentially 
shorten the process and lower the research costs. Considering 
its antagonistic effect on 5-HT2 and DRD2 receptors, we 
thought that risperidone would be a good candidate for the 
exploration of potential anticancer activity against a well-
established breast cancer cell line, MCF-7.

Material and Methods
This study was approved by the Scientific Projects 
Coordinatorship of Uşak University with Decision No: 2018/
ARGE002.
Maintenance of cell cultures
The MCF-7 cell line used in our experiments is a cell line originally 
isolated from the breast tissue of a 69-year-old Caucasian 
woman (ATCC HTB-22). Cells were grown and passaged in RPMI 
1640 medium supplemented with 10% fetal bovine serum (FBS, 
Capricorn Scientific), 2 mM L-glutamine (Capricorn Scientific), 
100 IU/mL penicillin (Capricorn Scientific), and 100 µg/mL 
streptomycin (Capricorn Scientific).
Measurement of cell proliferation

For the proliferation experiment, 10,000 cells were seeded per 
well in 90 µL of medium in a 96-well plate and incubated for 24 
hours at 37 °C. By the end of this period, the cells had reached 
about 75% confluence. At that point, 10 µL of risperidone 
(Toronto Research Chemicals) solutions prepared by serial 
dilution in cRPMI were added to final concentrations of 800, 
400, 200, 100, 50, 10, 1, 0.1, and 0.01 µM. Only methanol, 
the solvent of risperidone, was added as a negative control. 
As a positive control, cisplatin, a well-known chemotherapeutic 
agent, was added with a final concentration of 30 µM. 
Considering the possibility of not having an autocrine cycle with 
dopamine and serotonin synthesis in the MCF-7 cell line, 50 µM 
dopamine (Toronto Research Chemicals) and 10 µM serotonin 
(Toronto Research Chemicals) were added to some wells 
together with risperidone. Controls of only dopamine and only 
serotonin were used to investigate the risperidone-independent 
effects of those compounds. Cells were incubated for 12, 24, 
48, and 72 hours after risperidone was added.
The Cell Counting Kit-8 (CCK-8; Sigma Aldrich) was used 
in accordance with the manufacturer’s instructions to 
metabolically measure cell viability.  The CCK-8 kit determines 
cell viability by calorimetrically measuring the amount of soluble 
yellow formazin in the medium formed by the dehydrogenase 
enzyme as a result of metabolic activity in living cells with 
a principle similar to MTT assays.  Briefly, 10 µL of CCK-8 
solution was added to the wells and an amount of formazin 
proportional to the viable cells was measured at 450 nm after 2 
hours of incubation at 37 °C using the Multiskan FC Microplate 
Photometer (Thermo Fischer Scientific). Experiments were 
repeated three times, each with technical duplicates, and the 
values were normalized to negative controls.
Measurement of cell migration
We investigated the effect of risperidone on MCF-7 cell 
migration at IC50/2 (80 µM), IC50 (160 µM), and IC50×2 (320 
µM) concentrations by two-dimensional cell scratch assay. 
When MCF-7 cells reached 100% confluency on a 24-well plate, 
the cells were scraped with a P200 pipette tip. The scraped 
cells were then washed out twice with PBS to obtain a smooth, 
clean cut at the edges. Images were obtained at 0, 24, 48, 
and 72 hours from three separate points marked with a pen 
from each scratch using an inverted microscope (Nikon) with a 
camera attachment. These images were analyzed using open-
source ImageJ software and the healing rate of the cuts was 
determined by normalizing to 0 hours. The assay was performed 
in triplicate and only methanol was used as a negative control.
Determination of DNA damage
Various concentrations of risperidone (IC50/2, IC50, and 
IC50×2) were administered to MCF-7 cells in 24-well plates for 
72 hours. Cisplatin (5 µM) was used as a positive control. Cells 
were first washed with PBS and then pelleted by centrifugation 
at 700×g for 10 minutes at 0 °C. A normal-boiling agarose gel 
solution (1%, 100 µL) was dripped onto a slide closed with a 
coverslip. The first layer of agarose was ready after holding at 
4 °C for 5 minutes. The cell suspension (25 µL; 106 cells/mm3 
in PBS) was mixed with 75 µL of 0.65% low-boiling agarose 
at 45 °C and then quickly spread over the first agarose layer. 
This was kept at 4 °C for 5 minutes for the slide to freeze. To 
lyse the cell and nucleus membrane and release the DNA in the 
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agarose, the slides were placed in an ice-cold lysis buffer (2.5 M 
NaCl, 100 mM Na2EDTA, 10 mM Tris, 1% sarkosyl, 10% DMSO, 
and 1% Triton X-100, pH 10) and kept at 4 °C for 1 hour in the 
dark. Before the electrophoresis process, the slides were held 
in an alkaline electrophoresis buffer (300 mM NaOH and 1 mM 
Na2EDTA, pH 13) for 20 minutes at 4 °C in the dark to unwind 
the double-stranded DNA. Electrophoresis was performed in the 
same buffer for 20 minutes in the dark at 4 °C at 25 V (0.96 V/
cm; approximately 250 mA). After electrophoresis, slides were 
washed 3 times for 5 minutes with 5 mL of 0.4 M Tris HCl (pH 
7.5) to neutralize the alkaline buffer. Slides were then stained 
with 60 µL of ethidium bromide (20 µg/mL) and evaluated 
within 4 hours.
DNA images were captured with a fluorescence microscope 
(Nikon). The evaluation of images was performed semi-
quantitatively in the form of visual scoring. Undamaged cells 
were detected by the observation of a bright center with less 
intense edges (no migration). In the event of DNA damage, an 
irregularly edged appearance is observed depending on the 
number of fragments or chain breaks and the level of alkaline-
labile regions. Depending on the severity of the damage, there 
is an extension from the center to the edge. This appearance is 
called stretch or low migration. As the damage increases, the 
cells will take the form of a comet (high migration). The final 
stage is apoptosis. DNA images were scored subjectively from 
0 (no damage) to 4 (high damage) according to the degree of 
damage observed. The experiment was performed in triplicate 
and Duncan’s test was used for statistical analysis.

Results
Antiproliferative effect of risperidone on MCF-7 cells
The CCK-8 proliferation assay revealed that risperidone 
suppresses proliferation of MCF-7 cells in a dose-dependent 
manner without being affected by external serotonin and 
dopamine supplementation (Figure 1), suggesting that an 
autocrine cycle was most likely established by the synthesis of 
dopamine and serotonin by the MCF-7 cells. Hence, dopamine 
and serotonin were not added exogenously in the following 
migration and genotoxicity experiments.
It was observed that the proliferation of MCF-7 cells was 
suppressed at rates of up to 100% after 72 hours in the 
presence of risperidone above 400 µM, which was equivalent 
to the effect of cisplatin at 30 µM. A similar antiproliferative 
effect was observed after 48 hours, but not after 12 or 24 hours 
(data not shown), implying that risperidone requires about 48 
hours to show its cytotoxic effects.
The IC50 value of risperidone, or the concentration at which 
50% of cells lose their viability, was estimated to be about 160 

Table 1. Dose-dependent toxicity of risperidone on MCF-7 cells

Application
Concentration 

(µM)
DNA damage 

(arbitrary units) Mean±SD

Methanol (negative control) - 3.67±0.58

Cisplatin (positive control) 5 51±3.61*

Risperidone

80 5±1*

160 9.67±1.53*

320 13.67±0.58*

*: p<0.05; SD: standard deviation.

Figure 2. A) Representative images captured at various time 
points showing the suppression of MCF-7 migration (healing) 
with various concentrations of risperidone. B) Graphed version 
of the migration percentages. 

Figure 1. Effects of risperidone on the migration of MCF-7 
cells after 24, 48, and 72 hours at IC50/2, IC50, and IC50×2 
doses were examined by cell scratch assay.
Ser: serotonin; Dop: dopamine. 
Gradual suppression of MCF-7 proliferation at increasing doses 
of risperidone. External addition of serotonin (Ser) or dopamine 
(Dop) had no effect on suppression.
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µM based on the trendline equation of the viability curve. The 
proliferation of MCF-7 cells was not affected by the addition 
of either dopamine or serotonin in the absence of risperidone, 
suggesting that the observed antiproliferative effect arose 
solely from risperidone. 
Inhibitory effect of risperidone on MCF-7 cell migration
The effects of risperidone on the migration of MCF-7 cells 
after 24, 48, and 72 hours at IC50/2, IC50, and IC50×2 doses 
were examined by cell scratch assay. Risperidone was shown 
to inhibit migration at increased concentrations (Figure 1). 
Comparisons made with the control group containing only a 
solvent (methanol) showed that this difference was significant 
for IC50×2 (320 µM) at 48 and 72 hours (p=0.023 and p=0.008, 
respectively) and for IC50 at 72 hours only (p=0.039). The gap 
closure or migration percentage decreased from about 70% to 
30% compared to the control group at the end of 72 hours in 
the presence of 320 µM risperidone (Figure 2).
Genotoxic effect of risperidone on MCF-7 cells
It was observed that risperidone at IC50/2 (80 µM), IC50 (160 
µM), and IC50×2 (320 µM) concentrations caused DNA damage 
in MCF-7 cells in proportion to the applied concentration (Table 
1). The effect was not as high as that of cisplatin at 5 µM 
(51±3.61 AU), but it was significant at all concentrations (5±1, 
9.67±1.53, and 13.67±0.58 AU for increasing concentrations).

Discussion
Studies have shown that chronic stress may increase the 
predisposition to developing cancer, which is supported by the 
known associations of various neurotransmitters with cancer 
progression [1]. Drugs that cause DRD2 antagonism have 
been shown to have therapeutic effects for various cancer 
types. Antipsychotic agents that work as DRD2 antagonists, 
such as sulpiride, dexamethasone, and thioridazine, have been 
shown to have antitumor activities against breast cancer [23, 
24]. In another study, tropisetron and ketanserin were found 
to suppress proliferation of the MCF-7 breast cancer cell line 
through 5-HT2a and 5-HT3 antagonism [25]. In the present 
study, risperidone, which is accepted as an antipsychotic drug 
in the global literature, was considered for use as an antitumor 
agent against breast cancer due to its well-known DRD2 and 
5-HT2a antagonistic effects. Its antitumor effects on MCF-7 
breast cancer cells were demonstrated in vitro by revealing its 
antiproliferative and genotoxic as well as migration-suppressing 
properties against MCF-7 cells. 
Any contribution to revealing the mechanisms behind the 
antitumor activity of risperidone is crucial to enable more 
effective drug design for tumor growth intervention studies. 
Therefore, in future studies, the mechanistic background 
of risperidone’s antitumor activity needs to be elucidated by 
studying its effects on DRD2- and 5-HT2a-associated ERK and 
Akt signaling pathways. Once we have a better understanding 
of those underlying mechanisms, any drug currently in use or in 
the process of being developed that takes effect via DRD2 and/
or 5-HT2a antagonism may be considered for use in potential 
antitumor applications.
This study has provided encouraging preliminary data for the 
development of new drugs to effectively treat various cancer 
types via DRD2 and 5-HT2a blockage with minimal side effects.
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